tutorials/007 - Redshift, MySQL, PostgreSQL, SQL Server, Oracle.ipynb (231 lines of code) (raw):
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[](https://github.com/aws/aws-sdk-pandas)\n",
"\n",
"# 7 - Redshift, MySQL, PostgreSQL, SQL Server and Oracle\n",
"\n",
"[awswrangler](https://github.com/aws/aws-sdk-pandas)'s Redshift, MySQL and PostgreSQL have two basic functions in common that try to follow Pandas conventions, but add more data type consistency.\n",
"\n",
"- [wr.redshift.to_sql()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.redshift.to_sql.html)\n",
"- [wr.redshift.read_sql_query()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.redshift.read_sql_query.html)\n",
"- [wr.mysql.to_sql()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.mysql.to_sql.html)\n",
"- [wr.mysql.read_sql_query()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.mysql.read_sql_query.html)\n",
"- [wr.postgresql.to_sql()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.postgresql.to_sql.html)\n",
"- [wr.postgresql.read_sql_query()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.postgresql.read_sql_query.html)\n",
"- [wr.sqlserver.to_sql()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.sqlserver.to_sql.html)\n",
"- [wr.sqlserver.read_sql_query()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.sqlserver.read_sql_query.html)\n",
"- [wr.oracle.to_sql()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.oracle.to_sql.html)\n",
"- [wr.oracle.read_sql_query()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.oracle.read_sql_query.html)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install the optional modules first\n",
"!pip install 'awswrangler[redshift, postgres, mysql, sqlserver, oracle]'"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"import awswrangler as wr\n",
"\n",
"df = pd.DataFrame({\"id\": [1, 2], \"name\": [\"foo\", \"boo\"]})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Connect using the Glue Catalog Connections\n",
"\n",
"- [wr.redshift.connect()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.redshift.connect.html)\n",
"- [wr.mysql.connect()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.mysql.connect.html)\n",
"- [wr.postgresql.connect()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.postgresql.connect.html)\n",
"- [wr.sqlserver.connect()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.sqlserver.connect.html)\n",
"- [wr.oracle.connect()](https://aws-sdk-pandas.readthedocs.io/en/3.11.0/stubs/awswrangler.oracle.connect.html)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"con_redshift = wr.redshift.connect(\"aws-sdk-pandas-redshift\")\n",
"con_mysql = wr.mysql.connect(\"aws-sdk-pandas-mysql\")\n",
"con_postgresql = wr.postgresql.connect(\"aws-sdk-pandas-postgresql\")\n",
"con_sqlserver = wr.sqlserver.connect(\"aws-sdk-pandas-sqlserver\")\n",
"con_oracle = wr.oracle.connect(\"aws-sdk-pandas-oracle\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Raw SQL queries (No Pandas)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1]\n"
]
}
],
"source": [
"with con_redshift.cursor() as cursor:\n",
" for row in cursor.execute(\"SELECT 1\"):\n",
" print(row)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading data to Database"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"wr.redshift.to_sql(df, con_redshift, schema=\"public\", table=\"tutorial\", mode=\"overwrite\")\n",
"wr.mysql.to_sql(df, con_mysql, schema=\"test\", table=\"tutorial\", mode=\"overwrite\")\n",
"wr.postgresql.to_sql(df, con_postgresql, schema=\"public\", table=\"tutorial\", mode=\"overwrite\")\n",
"wr.sqlserver.to_sql(df, con_sqlserver, schema=\"dbo\", table=\"tutorial\", mode=\"overwrite\")\n",
"wr.oracle.to_sql(df, con_oracle, schema=\"test\", table=\"tutorial\", mode=\"overwrite\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Unloading data from Database"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>name</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>foo</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>boo</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id name\n",
"0 1 foo\n",
"1 2 boo"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wr.redshift.read_sql_query(\"SELECT * FROM public.tutorial\", con=con_redshift)\n",
"wr.mysql.read_sql_query(\"SELECT * FROM test.tutorial\", con=con_mysql)\n",
"wr.postgresql.read_sql_query(\"SELECT * FROM public.tutorial\", con=con_postgresql)\n",
"wr.sqlserver.read_sql_query(\"SELECT * FROM dbo.tutorial\", con=con_sqlserver)\n",
"wr.oracle.read_sql_query(\"SELECT * FROM test.tutorial\", con=con_oracle)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"con_redshift.close()\n",
"con_mysql.close()\n",
"con_postgresql.close()\n",
"con_sqlserver.close()\n",
"con_oracle.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "awswrangler-v9JnknIF-py3.8",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5 (default, Apr 13 2022, 19:37:23) \n[Clang 13.0.0 (clang-1300.0.27.3)]"
},
"vscode": {
"interpreter": {
"hash": "83297b058d59ee0acd247586c837429190a8258f15c0eea6234359f5557dde51"
}
}
},
"nbformat": 4,
"nbformat_minor": 4
}